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INTRODUCTION

The major objective of this article is to examine eigenvalue equations

expressed in terms of dimensionless variables. Our application is to

underwater acoustic ducts for which the square of the index of

refraction is piecewise linear. For this case the eigenvalue equation
1 1

involves the Airy functions Ai, Bi, Ai, and Bi for various arguments.

We consider two related approaches to the eigenvalue problem. The

first approach is the usual one, while the second approach is that of

this article. The first approach is to determine the eigenvalues,

i.e., the mode phase velocity, as a function of frequency and the

profile parameters. Given a sound speed profile,one iterates the

eigenvalue equation to determine the mode phase velocity as a function

of frequency. This approach is useful when treating profiles with a

large number of layers.

The second approach is to express the eigenvalue equation in terms of

dimensionless variables. These variables are the various arguments of

the Airy functions and various ratios of sound speed gradients. The

eigenvalue solution consists of a set of these dimensionless variables,

called an eigenvalue set, that satisfy the eigenvalue equation. The

frequency and phase velocity are then obtained from expressions which

involve the eigenvalue set of dimensionless variables and the profile

parameters. The solutions are valid for any sound speed profile that

falls within the layer configurations for which the eigenvalue equation

is formulated.

We note that the two approaches use exactly the same eigenvalue

equation. In the first approach we select the problem variables

(orofile parameters, frequency, phase velocity) and convert them to

dimensionless mathematical variables which are then used in the

iterative solution of the eigenvalue equation. The second approach



reverses these steps. We first determine the iterative solution of the

elgenvalue equation for the mathematical variables. These mathematical

variables are then associated with the physical variables for the

particular profile of interest.

As we shall demonstrate, the second approach is advantageous in the

treatment of relatively simple duct configurations that involve only a

few mathematical variables. Examples are given that illustrate cases

of from one to five variables.

The second approach is not new. For example it is used in Ref. 1, which

is based on much earlier work by investigators in electromagnetic propa-

gation. Reference 1 treats a bi-linear surface duct for which there

are three dimensionless variables, designated as Mx n, M and p.

Our renewed interest in the second approach stems from the studies of

Refs. 2 and 3. In Ref. 2 a double duct with nearly coincident

eigenvalues was constructed and investigated. The construction was

based on the normal mode solutions for a positive-gradient surface duct

and for a symmnetric refractive duct. For these simple ducts there is

only one dimensionless variable in the appropriate elgenvalue equation

and it was demonstrated that here the phase velocity could be

explicitly represented as a function of the frequency, profile

parameters, and the roots of Ai and Al. Furthermore it was shown that

for these simple ducts the phase integral results of ray theory could

be brought into congruence with mode theory by the use of non-integral

values of mode number.

This result was carried forward in Ref. 3, which recommnends a procedure

for testing various ray theories by a comparison of phase-integral

results with the exact solutions of normal-mode theory. This procedure

pr'iosed the use of non-integral values of mode number such that the

the ray- and mode-theory results agree in the high frequency limit.



Section I presents general expressions for the eigenvalue formulation.

Section II deals with the unbounded asymmetric refractive duct for

which there are two dimensionless variables. An expression for

non-integral mode number, which brings ray and mode theory into

congruence, is developed. Section III treats an asymmetric refractive

duct with a surface boundary. For this case there are three

dimensionless variables. Section IV deals with a surface duct

overlaying a refractive duct. For this general case there are five

dimensionless variables. However for the profile configuration of Ref.

2, this reduces to three dimensionless variables, Section V outlines

areas for further investigation. A summary is provided in Section VI.

I. GENERAL EXPRESSIONS

This section introduces the general expressions which are necessary or

useful for the analysis of eigenvalues.

The sound speed in each layer of the profile is expressed as

2
[ci/c(z)]J . I - 2yi(z - zi)/c i, (1)

where ci, zi, and yi are the sound speed, depth, and sound-

speed gradient, respectively, at the top of layer i. This article will

only treat the case of continuous sound speeds at layer interfaces,

i.e., the sound speed at the top of layer i and at the bottom of layer

i-l is the same with a value of c.. The case of discontinuous sound1
speeds is tractable but leads to additional complications.

For this profile the unnormalized depth function for mode n and layer i

may be written as

F ni(z) = Ani Ai (-Cni) + Bni Bi (- ni). (2)



Here A 1 and Bni are coefficients which are independent of Z, Ai

and B1 are the Airy functions, and C i is given by

r3 2 2 2
Cni(Z) = aI (z - Zj) + W /cj - xnJ/ai. (3)

In Eq. (3)

3 2 3ai  - -2-fiw /ci .  (4)

The quantity x n is known by several names i.e., the mode wave

number, the mode eigenvalue, and the separation constant. The boundary

conditions and the interface matching conditions form a system of

homogenous linear equations in the coefficients Ani and B ni. The

number of equations is equal to the number of A ni plus the number of

B .. This system of equations has a non-trivial solution (non-zero)

if and only if the determinant of the coefficient matrix of the Ani

and Bni is zero. This determinant set to zero is the eigenvalue

equation. The X are the values of mode wave number for which then
determinant is zero.

At layer interface i the pressure and its depth derivative must be

continuous. These matching conditions require Airy function evaluation

at the upper interface of layer i and the lower interface of layer

i-l. Thus at the upper interface of layer i the Airy functions must be

evaluated at -x where

2 2 2
xi =i  - (w2 /ci - Xn)/ai. (5)

4



Equation (5) follows immediately from Eq. (3) with z = z.. We note

that Eq. (3) may be evaluated in terms of c rather than z. From Eqs.

(1) and (3) it follow. that

2 2

Cni = ( 2/c2 - xn)/a i . (6)

This expression yields not only Eq. (5) but also the lower interface

evaluation of layer i-l at -xi'i- l where

2 2 2xi i- (2/c i  - Xn)/ai_l, (7)

At layer interface i the continuity of pressure leads to

An,i-l Ai(-xi,i-l) + Bn,i-1 Bi(-xi,i-l)

- Ani Ai(-Xi,i) - Bni Bi(-xi,i) 0 0. (8)

The continuity of depth derivative leads to

1 1
An,i-l ai-1 Ai(-xi,i-l) + Bn,i_ l ai-l Bi(-xi~i- l )

1 1
- Ani ai Ai(-xii) - Bni ai Bi(-xi i) - 0. (9)

We now examine various boundary conditions. Consider first cases where

the layer is an unbounded half space. When layer i is an unbounded

half space with positive sound-speed gradient, the solution is

F ni(z) = Ani Ai (-Ch) (10)

i.e., the coefficient B is zero. Similarly when layer I is an
ni

unbounded half space with negative sound-speed gradient, the solution is

nl (z) = A. Ai (-C (l)



In this latter case Eq. (4) cannot be used directly as a. is evaluated1
in terms of the slope and sound speed at the upper interface. However,

we can also evaluate ai in terms of the slope and sound speed at the

lower interface. From Eq. (1) we determine that

3 3

dc/dz = c 3Yi/c. (12)

Thus if yio is the slope at the bottom of layer i,

3 3
Y. =c Y/c (13)

io 1+1 1 V'

Hence

323
ai3 -2 2 /ci4 l (14)

evaluates a. in terms of the slope and sound speed at the lower1

interface.

Consider next the case where interface 1 is the ocean surface. The

condition for this interface is

Fnl(Z) = Ani Ai(-x 1 l) + Bnl Bi(-xi1 ) = 0. (15)

Equations (8) to (11) and (15) will allow us to express the eigenvalue

equation for the duct configurations of interest.

We have found that the mode phase velocity is somewhat easier to

interpret and to analyze than the mode wave number. The mode phase

velocity is given by

C = W/Rl x (16)
pn n

0



The modes are always ordered by increasing phase velocity i.e., mode 1

has the lowest phase velocity, mode 2 the next lowest etc. Equation

(5) may be expressed in terms of mode phase velocity as

2 1/2 2/3 -2/3
xi i = 1 - pn) f (-ri) (17)

Equation (17) may be solved for c to obtainpn

C = ci(1 - f- 2/3X)- /2, (18)

where

2/3 2/3X x x (-fi  x = x Yi (19)

and

-2/3
X1 * xi1 i .  (20)

The simplest configuration is the single positive-gradient surface

duct. Here Eqs. (10) and (15) both apply and the eigenvalue equation

reduces to

Ai(-xl ) = 0. (21)

Here the generic x 1, represents the single dimensionless variable of

this profile configuration. The eigenvalues are the roots of the Airy

function with sign changed. Equations (18) to (20) with i=l then gives

an explicit expression for phase velocity in terms of the frequency,

the profile parameters c1 and yl, and the eigenvalues (roots of

the Airy function).



II. UNBOUNDED REFRACTIVE DUCT

This section treats the solutions for a two-layer unbounded refractive

duct. The general case of an asymmetric duct is treated with the

symmetric duct as a special sub case.
J

Figure 1 is a schematic of the duct. The arrows indicate that the two

layers are unbounded. From the standpoint of the normal mode solution,

this profile can be characterized by three parameters. These are the

axial sound speed (c1 ), the gradient at the axis for the lower layer

(- ), and for the upper layer (y10 ).

For the upper and lower layers Eqs. (10) and (11) respectively apply.

At the layer interface (axis) Eqs. (8) and (9) apply to yield

An0 Ai(-xl 0 ) - Anl Ai(-x 1 ,1 ) 0. (22)

and

1 1
Ano a0 Ai(-xl,O) - An, a i Ai(-xl,1 ) = 0. (23)

We now let

p = a1/-ao, (24)

where a0 is evaluated by Eq. (14) and a by Eq. (4). These expres-

sions lead to

1I/3p = (yl/-YlO) (25)

• 8• u u m m m m ~ m mm m ~ n



We now let x = x 1 .* The eigenvalue equation may then be expressed

from Eqs. (22) and (23) as

Ai(-p 2x) - Ai(-x)
0 0. (26)

1 1

Ai(-p 2x) p Ai(-x)

Expansion of Eq. (26) leads to

1 1
Gl(x,p) = p Ai(-p 2x) Ai(-x) + Ai(-x) Ai(-p 2x) = 0. (27)

Thus Eqs. (18) to (20) with 1=1 and xl 1 equal to the root of Eq. (27)

yield the phase velocity.

Here the dimensionless variables are p and x. The phase velocity is

obtained from Eq. (18) as an explicit function of the frequency, the

profile parameters c1 and yl, and the dimensionless eigenvalue x.

The third profile parameter, yIO0 does not appear explicitly in

Eqs. (18) to (20). However it appears in the eigenvalue equation

through the variable p and thus influences the value of x which

satisfies Eq. (27).

We note that the solution x of Eq. (27) applies to all profiles with

the given value of p. Moreover one eigenvalue set suffices for all
frequencies. The advantages of this characteristic will be pointed out

later in this section. As we shall see later for more complicated

profile configurations each eigenvalue set corresponds to a single

frequency.

Consider now the case of a symmetric duct i.e., p=l. Here Eq. (27)

reduces to

12 Ai(-x) Ai(-x) = 0. (28)



Thus the x 1 represent the roots of the Airy function with the sign

changed and the roots of the Airy function derivative with the sign

changed. The roots of the derivative correspond to the odd number modes

while the roots of the function correspond to the even number modes.

A computer routine was developed to solve Eq. (27) by Newton's method.
1

The procedure starts at p=l with a known root of Ai(-x) or Ai(-x).

The value of p is decreased by successive steps of ap and the

solution of Eq. (27) obtained for each step by the iteration

aGi I
xi+l xi + Gl(Xi,p)/II , (29)

ax Ix i

where

a-I = -[P3+l) Ai(-xi) Ai(-p 2 xi) - pxi Ai(-Xi) Ai(-p2xi) . (30)

The initial estimate of x i is taken to be the solution of Eq. (27)

for the previous value of p. Once the iteration of Eq. (29) reaches

the desired accuracy, the process is stopped, p is decreased by

ap and the iteration process repeated.

We note that the solutions of Eq. (27) for 0 < p _ 1 suffice for all p.

If the result of Eq. (25) is greater than 1, we consider the reflection

of the profile about the axis. For this configuration p < 1.

Figure 2 presents the solution of Eq. (27) as a function of p for the

four smallest roots i.e., the first four modes. At p=l the odd roots

correspond to the negative of the roots of the Airy derivative and even

roots to the negative of the roots of the Airy function. At p=O, the

I ()



roots are given by the negative of the roots of the Airy function.
1

Thus for mode 1 the values of x increase monotonically from xi for

p-1 to x1 for p=O. For modes 2 to 4 they increase respectively from
1

x to x2, from x2 to x3 and from x2 to x . When p=O, Eq. (27)

reduces to

1

Ai(-x) Ai(O) = 0. (31)

Thus the results of Fig. 2 for p-O are predictable.

The solutions of Eq. (31) are the same as Eq. (21) for the single

positive-gradient surface duct. There are two distinct configurations

corresponding to p=O. The first is il-O which arises from an isospeed
half space below the axis. The second is y 1o- which arises from

the limit of a steep negative gradient above the axis. Although the

mathematical eigenvalues are the same for both configurations, the phy-

sical results are quite different. For yl=O, the phase velocity of

Eq. (18) reduces to the axial sound speed. For y10=-O, the phase

velocity of Eq. (18) depends in the usual manner on yl, f, and the

roots of Ai(-x)O.

We now examine approximate solutions to Eq. (27) as based on Taylor

series expansions about a given solution. Let x0 be the known solu-

tion for p0. Let

x = x0 + Ax (32)

be the solution for p = p0 + Ap. Let

2 2
p x = P 0 x0  

+  Ay, (33)

II



where

2 2 _2

Ay = Ax p + (p2 _ p)X (34)

We expand Ai(-x) and Al(-x),as Taylor series in ax about x0, and

21 2 2
Ai(-p x) and Ai(-p x) as Taylor series in Ay about pO xo.

Consider just the case of general p0. When the first 3 terms of the

Taylor expansions in ax and ay are substituted in Eq. (27), a sur-

feit of 14 terms result. There are two constant terms which represent

Eq. (27), evaluated at x0 and P0 and which sum to zero. There

are two terms each in ax, Ay, and ax Ay. There are three terms
2 2

each in (Ax) and (Ay) . The result for second-order terms is

too complicated for our purpose here. If we retain only first order

terms in ax and Ay, we obtain as a correction

2 2 2 2
Ax = (po-p )x0 (p+Kp0 )/l+p +pK(l+PPo), (35)

where

2 _o)/12 I
K - x0 Ai(-p 0x0 ) Ai(-x 0)/A(-p0x0 ) Ai(-x 0 ). (36)

Equations (35) and (36) then give the value of x for p in a neighbor-

hood about p0 '

However if the expansion point is taken at p0 =l or pO=0, the expansion

greatly simplifies. Consider first the expansion for odd modes about

1 1 1 1
P0=l. Here x0 = xi , where x. is a root of Ai(-x)=O. Thus both Ai(-x 0 )

1 2
and Ai(-p 0x 0) are zero and the 14 terms for general p0 collapse to

2
only 4 terms which have a common factor of Ai(-xo) Ai(-poXo). Here the
6x is a solution to the quadratic

2
A(Ax) 2 BAx + C = 0, (37)

12



where

A - p(p 2 -p+l)/2, (38)

1
B xip(p 2-p+] ), (39)

and
12

C = xi (p-l) (1+p2 )/2. (40)

One of the two roots of Eq. (37) is spurious. The desired root of Eq. (37)

is obtained by choosing the sign of (8 2-4AC) 1/ 2 in the quadratic formula

as positive. This choice yields Ax=O as the correct root when C=O, i.e.,

when p=1.

In the case of even modes about p0=l, Xo=Xi , where x is a root of

2
Ai(-x)=O. Here both Ai(-xo) and Ai(-p2xo) are zero and the 14 terms

for general p0 collapse to only 2 terms which have a common factor of

1 1 2
Ai(-x O) Ai(-p 0xo). Here ax satisfies a linear equation which leads to

Ax - pXl(P-1)/p - p+ 1. (41)

In the case of all modes about po=O, xo=X i, where x. is a root of

2
Ai(-x)O. Here Ai(-xo)mO. However Ai(-poxo)=Ai(O). The 14 terms for

1
general pO collapse to 5 terms which have a common factor of Ai(-x 0 ).
Here ax is a solution to the quadratic

2
A(Ax) + Bax + C 0 0, (42)

where

A = -xi/2, (43)

B = K(l+p 3 ), (44)

C = p(I-p 2 x0j), (45)



and

K - Ai(O)/Ai(O) - -0.7290112. (46)

The desired root of Eq. (42) is again obtained by choosing the sign of

(B 2-4AC) 12in the quadratic formula as positive. This choice yields

ax-0 as the correct root when C=0, i.e., when p=O.

The results of the various approximations are compared with the exact

solution in Tables 1 and 2 for modes 1 and 2 respectively. Column 2

gives the exact solution of Eq. (27) as obtained by iteration. Column 3

presents the application of Eq. (35) for the expansion point p0 U0.5.
The value of Eq. (37) is 3.4268069 and 57.9192390 for mode I and 2

respectively. Column 4 of Tables 1 and 2 present the applications of

Eq. (37) and (41) respectively. Column 5 presents the application of

Eq. (42).

Equation (37) remains accurate to three significant digits at P-.65

and is the most accurate approximation. Equation (41) remains accurate

to three significant digits at p-.85 and is the second most accurate

approximation. In contrast the accuracies of Eq. (35) and Eq. (42) are

somewhat disappointing. The iterative solution of Eq. (27) is the

method of choice. If accurate algebraic approximates are desired, we

recommiend that the quadratic counterpart of Eq. (35) be developed and

its accuracy about various expansion points assessed. We believe that

this quadratic counterpart at various expansion points together with

Eqs. (37), (41) and (42) can provide accurate algebraic approximations.

This approach is laborious to develop but is straightforward.

We now compare the solution of Eq. (37) with that of Eq. (41) for

values of p near 1. Let

P = ILAp. (47)

1-4



We expand the solutions as power series in Ap. The general form is

ax = x(l) ap [1 + Oap + E(ap) 2], (48)

where x(l) represents the solution for p-l. In the case of Eq. 37,

D-1/2 and Em-1/2. In the case of Eq. (41), D-0 and E--l.

We now assess the modified phase integral result of Ref. 2. If we use

the modified n of Eqs. (38) and (39) of Ref. 2 and expand Eq. (6) of

Ref. 2 as a power series in ap we find Eq. (48) holds with D-1/4

and E=-13/6. Thus we see that the modified phase integral result

agrees with the result of Eqs. (37) to (41) to first order in ap.

Moreover the modified phase integral result lies exactly midway between

that for Eqs. (37) and (41). This result is gratifying, because the

modified phase integral result must be applied to both odd and even

modes. The result properly makes a compromise by "splitting the

difference" between the approximation for odd and even modes. Our

conclusion is that for value of p near 1 the modified phase integral

result of Ref. 2 represents a fair approximation which is not quite as

good as that of Eqs. (37) and (41).

We now present a modified phase integral approach which results in

exact values of phase velocity for an asymmetric refractive duct. We

set Eq. (19) equal to Eq. (6) of Ref. 2 and solve for n. The result is

n - 2x3 / 2 (l+p 3)/3w + 1/2, (49)

where x is the solution of Eq. (27) for the given p. Note that when

p=l, Eq. (49) is identical to Eq. (38) or (39) of Ref. 2. When p=O,

Eq. (49) is identical to Eq. (38) of Ref. 2. Thus Eq. (49) takes on the

o-oper values for p=l and p=O.



The validity of Eq. (49) was further checked by applying the method to

the two single unbounded ducts treated in Ref. 4. Figure 3 is a copy

of Fig. 31 of Ref. 4. The circles are the normal mode phase velocities

as detprmined for each duct by the first approach described here in the

introduction. The dashed and solid curves represent the phase integral

result for the upper and lower ducts respectively. As can be seen there

are systematic differences between the ray and mode results. These

differences were attributed to duct asymmetry.

To apply Eq. (49) we first evaluated the value of p for the ducts.

These values of p were 0.593636 for the upper duct and 0.806781 for

the lower duct. Table 3 presents a summary of results. Column 1 is

the mode number. Column 2 is the modified n, which applies for sym-

metric ducts, as determined by Eqs. (38) and (39) of Ref. 2. The

entries of columns 3 and 5 are the roots of Eq. (27) for the upoer and

lower ducts respectively. Columns 4 and 6 are the corresponding value
3

of Eq. (49) as determined by x and p .

The curves of Fig. 4 are the counterparts of those of Fig. 3, where the

non-integral mode numbers of Table 3 are used rather than the integral

values of the phase integral curves of Fig. 3. We have overlaid these

curves on the mode data of Fig. 3 and found that they go through the

centers of the circles within the plotting accuracy. Thus, this check

demonstrates that for the asymmetric refractive duct the use of Eq.

(49) brings the results of the phase-integral method of ray theory into

congruence with the exact normal mode solution.

Figure 4 also illustrates an advantage of the dimensionless variable ap-

proach. Each curve of Fig. 4 requires only one set of iterations of the

eigenvalue equation, i.e., Eq. (27), to determine the x for the given p

and desired mode number. In contrast the circles of Fig. 3 were ob-

tained Dy the usual approach in which the ohase velocity ic determined

ny Iterating the eiqenvalue equation for each desired freauencv. Thus

the generation of circles o F iq 3 requirec about 100 "'me, the number

of sets of iterat'ons ac did toe qeneratlor) t !e 'arves

I f



Observe in Fig. 3, the larger displacement between ray and mode theory

for the upper duct as compared to the lower duct. In Ref. 4 we

attributed this to the fact that the p for the upper duct was smaller

than that of the lower duct. We now know that this conclusion was in

error. Consider for example entries 4 and 6 of Table 3 for mode 1. We

see that n-l (the value for the phase-integral curves lU and 1L of Fig.

3) lies closer to the upper duct entry than to the lower duct entry.

Why then does the phase-integral curve for the upper duct lie further

away from the mode theory solution? The answer lies in the fact that

(Ti) 23appears as a factor in Eq. (19). This factor is about

4.3 larger for the upper duct than for the lower duct. Thus if the

error in x (n) were the same for both ducts the error in the x of Eq.

(19) would be 4.3 times larger for the upper duct. We see then that

the larger discrepancy for the upper duct is associated with a larger

gradient rather than larger p.

We close this section with the presentation of Fig. 5 which is based on

the double duct of Ref. 4. The circles represent the normal mode

results for modes 2 and 3 of the double duct. The curves are the

modified phase integral results, based on Eq. (49), for mode 1 of the

upper duct and mode 2 of the lower duct.

The curves are good approximations to the double-duct results with the

exception of the region where the curves cross. Thus we see that the

solutions for the single refractive profile of Fig. 1 are useful in the

wider context of double ducts with a surface boundary. The same conclu-

sion was reached in Ref. 2 for the case of a surface duct overlaying a

symmi~etric refractive duct. However this conclusion is based on

numerical examples. One of the remaining tasks of this article is to

demonstrate analytically the relationship between a simple unbounded

duct or a single-layer surface duct and more complicated profiles such

as the double duct of Ref. 2.



III. REFRACTIVE DUCT WITH SURFACE

The simplest extension of an unbounded refractive duct is to bound the upper

layer with a free surface. Figure 6 presents a schematic of the profile,

which is characterized by four parameters. These are the axial sound speed

(c2), the gradients at the axis for the lower layer (y2), and for the

upper layer (y 20 ), and the sound speed at the surface (c1).

We let

w 2 2 2
x2, 2 = x = (/c2-xn)/a2. (50)

2 2 2

xl, 1 - y w (w2/cl-Xn)P2/a2, (51)

where
1/3

p = 1/3 (52)

and

2
x o x. (53)

The eigenvalue matrix may be expressed as

Ai(-y) Bi(-y) 0

Ai(-p 2x) Bi(-p 2x) -Ai(-x) = 0. (54)

1 1 1
Ai(-p 2x) Bi(-p 2x) pAi(-x)

This may be written as

G(x.y.p) - Ai(-y)G2 + B1(-y)G l = 0 (55)

where G, is given by Eq. (27), and

G2 = pBi(-o 2x) Ai(-x) + Ai(-x) Bi(-p 2 x). (56)



Equation (55) may be considered as expressing the eigenvalue x for given

values of the parameters p and y. The parameter p is determined by

the sound speed profile. Although we are free to choose the value of y,

this choice specifies the frequency. This characteristic may be demon-
2

strated by eliminating X. from Eqs. (50) and (51) and solving forn
frequency to obtain

2 3/2 2 -3/2 -1f = (p x-y) [1-(c 2/c1 ) ] (-y20 )r (57)

The steps in the solution are as follows:

1. We choose a value of y.

2. The eigenvalue equation, Eg. (55), is solved for x, for the

chosen value of y and the value of p for the desired profile.

3. The frequency is determined from Eq. (57), with the use of y,

x, and other parameters for the desired profile.

4. The phase velocity is determined from Eq. (18) with the use of

x, the frequency of Eq. (57), and the parameters c2 and

Y2 for the desired profile.

If we have available the solution of Eq. (55) for all values of p and

y we have the eigenvalues for all frequencies and for all profiles of

the generic form of Fig. 6. The solution of Eq. (55) may be obtained

by the iteration

xi+ l  xi + [G/(aG/ax)] xi, (58)

where

aG/ax = Ai(-y) (aGo /ax) + Bi(-y) (aGI/ax) (59)

Here aG /ax is given by Eq. (30) and

1 1
G2- p 3 +]) [Ai(-x) Bi(-p 2x) - px Ai(-x) Bi(-p 2 x)j (60)



Figure 7 presents the first five roots of Eq. (55) as a function of y

for the case of p=l. Consider now the physical interpretation of y.

We see from Eqs. (51) and (16) that y=O corresponds to cp=c I. This

corresponds to the case of a ray grazing the ocean surface. Positive

values of y represent modes with phase velocity greater than the surface

i.e., rays reflecting from the ocean surface. Negative values of y

correspond to propagation in the refractive duct with no reflection

from the surface.

Consider the case of large negative y. From Eq. (57) this corresponds

to high frequencies. This then represents the case of strongly trapped

modes. The appropriate asymptotic expressions for Ai(-y) and Bi(-y)

are given by Eqs. 10.4.59 and 10.4.63 of Ref. 5. These expressions

lead to

-l
Ai(-y)/Bi(-y) - 2 exp (-2C), (61)

where

C - 2(-y) 3/2/3. (62)

Thus Eq. (61) approaches zero for large negative y and Eq. (55) reduces

to Eq. (27). Thus we have reached our initial goal. For high frequen-

cies (strongly trapped modes) the eigenvalues for the bounded duct of

Fig. 6 approach those of the unbounded duct of Fig. 1.

Consider now the solid horizontal lines of Fig. 7. These represent the

roots of Eq. (28), i.e., roots of the Airy function and its derivative.

Equation (28) is the solution of Eq. (27) for the special case of p=l

i.e., the condition of Fig. 7. We see that the roots of Eq. (55)

rather rapidly approach those for the unbounded duct as y is decreased

below zero.



Consider next the solid vertical lines of Fig. 7. These lines are

located at the roots of Ai(-y)=O. We see that Eq. (55) again reduces

to Eq. (27) in general and to Eq. (28) for p=l. Thus in Fig. 7 each

curve crosses the vertical solid lines at the horizontal lines which

are the roots of Eq. (28).

Moreover we note that Eq. (55) reduces to

62 = 0, (63)

when Bi(-y)=O. For the special case of p=l, Eq. (63) reduces to

1 1
Bi(-x) Ai(-x) + Ai(-x) Bi(-x) = 0. (64)

With the use of the Wronskian for the Airy functions Eq. (64) may be

simplified to

-l
Ai(-x) Bi(-x) + (21) = 0. (65)

Equation (65) has been solved by iteration. The first five roots are

given in column 2 of Table 4. These roots are plotted as dashed

horizontal lines in Fig. 7. The vertical dashed lines correspond to

the roots of Bi(-y)=O. We see that the curves of Fig. 7 cross the

intersections of the dashed lines.

We now see the advantage of the dimensionless variable approach.

Figure 7 provides the eigenvalue for the first five modes for all

profiles of the generic form of Fig. 6 with the restriction that the

refractive duct is symmetric.

We next examine Eq. (57). We see that when

y= 2 x, (66)

,2



the frequency is zero. Figure 8 again presents the eigenvalue curves.

The slant line is the locus, y=x, i.e., Eq. (66) for p=l. Eigenvalues

on the slant line represent zero frequency. Eigenvalues to the left of

the slant line represent real frequencies while those to the right

represent pure imaginary frequencies.

The points of intersection of Eq. (66) with the eigenvalue curves can

be expressed analytically. Substitution of Eq. (66) into Eq. (55)

leads to

1 1
2p Ai(-p 2X) Bi(-p 2x) Ai(-x) + Ai(-p 2x) Ai(-x) Bi(px)

1
+ Bi(-p 2x) Ai(-x) Ai(-p 2x) = 0. (67)

For the special case of p=l, Eq. (67) reduces to

1 1

Ai(-x) [3 Bi(-x) Ai(-x) + Ai(-x) Bi(-x)] = 0. (68)

With the use of the Airy function Wronskian the bracketed expression of

Eq. (68) may be further simplified to

I
Ai(-x) Bi(-x) + (4) -l = 0. (69)

This equation is similar to Eq. (65) and has been solved by iteration.

The solution to Eq. (68) then consists of the roots of Eq. (69) plus

the roots of Ai(-x)=O.

The first five roots of Eq. (68) are given in column 3 of Table 4.

Roots 1, 2, 4, and 5 are the first four roots of Eq. (69), whereas root

3 (and 6) are roots of Ai(-x)=O. The e roots are plotted as solid

horizontal lines in Fig. 8. We see that the curves of Fig. 8 do indeed

cross at the intersection of the slant line with the horizontal lines.

22-.



Although Fig. 7 only presents positive values of x, there are negative

roots. Figure 9 presents the continuation to negative values of the

curve of Fig. 7 for the lowest order root. The curve crosses zero at

the first root of Bi(-y)=O as previously discussed and approaches the

first root of Ai(-y)=O as a vertical asymptote. This latter

characteristic is a consequence of the fact that both terms of Eq. (28)

go to zero as x--. In general the curve of order n will cross

zero at the n'th root of Bi(-y)=O and will approach the n'th root of

Ai(-y)=O as a vertical asymptote.

We will not present the counterpart of Fig. 7 for other values of p.

However each value of p has a horizontal and vertical grid of lines

which bears the same relationship to the curves as shown in Fig. 7.

The vertical grid is always the same because it does not depend on

p. The solid lines of the horizontal grid are the solutions Eq.

(27). For example, for p=O.5 from Table 1 and 2 we see that the

first and second solid horizontal lines would lie at 1.64 and 3.35

respectively. Thus for example the second mode curve for p=O.5 is

asymptotic to 3,35, crosses 1.64 at y=4.09, and approaches a vertical

asymptote at y=5.52 for x=- . This last property holds because Eq.

(27) is satisfied for all p with the possible exception of p-.

As p varies from 1 to 0 the solid horizontal line for root n of Fig.

7 moves monotonically up from its present position to the n'th root of

Ai(-x)=O. This is readily inferred from the results of Fig. 2.

In the case of Fig. 1 we did not have to deal with p>l; whereas we

must do so for the case of Fig. 6. One may readily verify that if x is

a root of Eq. (27) for p, then

P2x 70)



is a root for p-1 . For example the root of Eq. (27) for p=2 for the

first order root is 7=0.25(l.64)=.4l. Thus as p varies from 1 to .

the solid horizontal lines of Fig. 7 move monotonically down from their

present positions and approach x=O as a limit.

For other values of p the dashed horizontal lines are the roots of

Eq. (56). We note that the solid and dashed horizontal lines of Fig. 7

are interleaved. Thus as the solid lines move upward with decreasing

p so will the dashed lines. Similarly the dashed lines will move

down with increasing p. There may be some question regarding the

dashed horizontal line at zero. The elements of Eq. (56) were expanded

in Taylor series about the point x=O. It was found that this root

moved upward for p<l and downward for p>l. Thus for p<l or

p>l x will turn negative for y larger or smaller than the

appropriate root of Bi(-y)=O.

For other values of p the horizontal lines of Fig. 8 are the roots of

Eq. (67). The x curves will intersect these lines along the line
2

y=p X.

In summarizing the results of Fig. 7, we note that the curves are

surprisingly simple and well behaved. The set of vertical and

horizontal lines provide a framework, which makes their characteristics

quite predictable. The dependence of frequency in Eq. (57) on the

eigenvalues x and y makes the problem more complicated than that of the

unbounded duct. However given an x versus y eigenvalue curve we can

readily generate from Eq. (57) the frequency associated with the

desired profile.

Although plots giving x as a function of y for various values of p

will provide all eigenvalues for the profile configuration of Fig. 6,

we decided to prepare a plot giving x as a function of p for a fixed

value of y. We chose as our example y=O, because this corresponds to

the interesting case of the ray which grazes the ocean surface me.,

c =c Figure 10 presents the first four roots of Eq. (55) as a
p
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function of p for the case of y=O. The roots were again obtained by

the method of Eqs. (58) to (60). The process was started at p=l

using the values of x from Fig. 7 that correspond to y=O. The curves

of Fig. 10 were then generated by moving p from 1 up to 4 and from 1

down to zero.

Our first reaction to Fig. 10 was that the results were in error. We
1

note that these results go to the roots of Ai(-x)=O for p=O, whereas

we expected them to go to the roots of Ai(-x)=O for p=O. If we set

P=O in Eqs. (27) and (50), Eq. (55) can be simplified to

Ai(-x) [Ai(-y) Bi(O) + Bi(-y) Ai(O) 0. (71)

Thus it would appear that Ai(-x)=O provides the roots for Eq. (71) and

indeed it does except for our unfortunate choice of y=O.

When y=O the term in the brackets of Eq. (71) is zero. This opens the

possibility of roots other than Ai(-x)=0 for p=O. It became evident

that a more sophisticated analysis was required. We let p=c,
2

expressed the various Airy functions with argument -p x as two-term

Taylor series expanded about zero, substituted these series in Eq.

(55), and collected terms of various order in c. The zero-order term

was the left side of Eq. (71), which is zero for y=O as previously

discussed. The first-order term was 2cAi(O) Bi(O) Ai(-x). There was
3 1 1

no second order term. The third-order term was -2c xAi(O) Bi(0) Ai(-x).
4 2 1

The fourth-order term was 2c x Ai(O) Bi(0) Ai(-x). We see that Ai(-x)=o

is indeed the limiting root as p-c-O, because this results in all
3

items of order through c to be zero.

.n order to verify the analysis of EQ. (71), we examined the first root

of Ea. (55) as a function of p for the case of y=-l. Here the root

went to 2.338 for P=O as predicted by Eq. (71). Further analysis is

beyond the scope of the present article. It would be of interest for

example to examine np behavior for fixed values of y near zero for



values of p near zero. Would the curves for y=±c be nested about

the curves of Fig. 10 for small p? If so how do they approach a

different limit at p=O?

We note that Fig. 10 exhibits another characteristic that we discussed

in connection with Fig. 7, i.e., x increases as p decreases below 1

and decreases as p increases above I.

IV. DOUBLE DUCT PROFILE

This section addresses one general form of double duct profile. A

brief discussion of the application of the method to more general

profiles is presented. Figure 11 presents the schematic of a double

duct profile which consists of a surface duct overlaying a refractive

duct. The duct can be characterized by six parameters. These are the

surface sound speed (c ), the barrier sound speed (c 2), the axial

sound speed (c 3) and the gradients at the top of the three layers

i.e., yl, Y2, and y3. Other gradients of interest such as y20 and

'30 may be derived from the given parameters with the use of Eq. (13).

The surface sound speed may be larger or smaller than the axial sound

speed. However both c and c3 must be less than c2.

There are five mathematical variables which we define as follows:

2 2 2
x3, 3 = x =(w

2/c3 - c2/cp)/a 3 , (72)

2 2 2
-= w =(/ 2 /c 2 _ w 2/cp)/a 2 , (73)

2 2 2
xj' l = y =(w2 /cl - w2/cp)/al. (74)

= (Y3/-Y30) 1

ano



The eigenvalue matrix may be expressed as

Ai(-y) Bi(-y) 0 0 0

2 2 (77)
AI(-plw) Bi(-plw) -Ai(-w) -Bi(-w) 0

1 2 1 2 1 1
Ai(-plW) Bi(-plw) pIAi(-w) plBi(-w) 0 - 0.

0 0 Ai(-p 2x) Bi(-p 2x) -Ai(-x)

o 0 Al(-p2x) Bl(-p2x) pAl(-X)

This may be written as

Ai(-y)[G W -G2 W 2] + Bi(-y)[G W 3-G2 W4 = 0, (78)

where

2 1 1 2
Wl = pIBi(-piw) Bi(-w) + Bi(-plw) Bi(-w), (79)

2 1 1 2
W2 = piBi(-plw) Ai(-w) + Bi(-plw) Ai(-w), (80)

2 1 1 2
W3 = pIAi(-plw) Bi(-w) + Ai(-plw) Bi(-w), (81)

2 1 1 2
W4 = plAi(-plw) Ai(-w) + Ai(-plw) Ai(-w), (82)

and G and G2 are given by Eqs. (27) and (56) respectively.

In carrying forward the solution for the profile of Fig. 11, it is

convenient to discuss it, as well as the simpler profiles already

treated. in the context of a general profile consisting of n interfaces

and m ooundaries. For such a profile there are 2n-m+1 profile

parameters and the two physical parameters f and c for a tota! ofp
2n+m+3 variables. In the first approach 2n+m+2 variables are

consilered independent while the dependent variable, c js
pconstrained by the eigenvalue equation.



In the second approach the number of introduced mathematical variables

is 2n+m. This is the number of interface and boundary conditions the

eigenvalue matrix must satisfy. Moreover there are introduced 2n+m

constraints which define the mathematical variables in terms of the

profile and physical parameters. We treat 2n+m-l of the mathematical

variables as independent with the remaining one satisfying the eigen-

value equation. Thus of the 2n+m+3 profile and physical variables,

2n+m are dependent while the remaining three are independent.

Consider in this context the simpler profiles, already discussed. In

the case of the single-layer surface duct the three independent

variables are cl , Y1 9 and f while the dependent variable is c as givenp
by Eq. (18). In the case of the profile of Fig. 1, the three indepen-

dent variables are again cl , YI and f. The two dependent variables are

Y as constrained by Eq. (24), and c as given by Eq. (18). In thep
case of the profile of Fig. 6, the three independent variables are c

c2, and y2 0 " The three dependent variables are y2 as given

by Eq. (52), f as given by Eq. (57), and c as given by Eq. (18).
p

We are now ready to proceed with the case of Fig. 11 for which n=2 and

m-l. We thus must select three independent and five dependent

variables. For the independent variables we select c2 ' c and Y3"

The dependent variable, y2 ' is constrained by Eq. (75) and the relation-
3

ship y2=(c2/c3 ) Y30" The dependent variable, f, is constrained

by

f = (2 xw)3/2 l (c3/c2) 2-3/2( (83)

2
EQuation (83) was obtained by eliminating c from Eqs. (72) and 73P
and solving for f, Equation (83) is the same as Eq 57) with thie

Oj't-ution of counterpart parameters 6,,ven r)T, eouenrc, ,)re may



determine the dependent variable c from Eq. (18) using the elgen-P
value x and the appropriate parameters associated with the third inter-

face of the profile. We next determine the dependent variable, c,

from the constraint

2/3 -2/3 -2/3 -2 -2
c1 - (Y20 f w c2 Y + cp )-1/2. (84)

Equation (84) was obtained by solving Eq. (74) for cI. Our fifth and

final dependent variable y is constrained from Eq. (76) and the

relationship y, - (ci/c 2 ) 3Y20 "

We see that the build up of the number of dependent variables with

ircreasingly more complicated profiles puts severe limitations on the

second approach. In fact the nature of Eq. (84) renders the second

approach essentially useless. The basic idea behind the second

approach was to determine eigenvalues in terms of the mathematical

variables and as independently of profile parameters as possible. The

problem with the profile of Fig. 11 is that we cannot express cI in

terms of mathematical variables in a useful manner. For example a

given elgenvalue set, together with other profile parameters, produces

a specific value of c1 which in general will not be useful. On the

other hand we cannot readily determine other variables, which will

produce a desired value of c as these variables are not independent

of each other. For example x is a function of y, f is a function of

c 2 and x, and c is a function of f.2 p

At this stage we should note that our choice of the three independent

variables as c2, c3, and y3 is somewhat arbitrary. For certain

parametric studies of the theory it may be of interest to consider

other sets of three variables as independent. However the use of other

sets will not solve the basic problem of the profile of Fig. 1 The

one boundary and two interfaces lead to five dependent varldbles which

are too many for the approach to cope with



The problem becomes even worse for example if the profile has four

distinct sound speeds at various interfaces or boundaries. Here two of

these sound speeds must be dependent variables and will be subject to

various constraints such as Eq. (84). We note at this point that the

problem with the second approach stems from the presence of more than

two distinct sound speeds at interfaces or boundaries. If the profile

is limited to two distinct sound speeds then the second method is

useful and is similar to the case of Sect. III where the x and y

variables are associated with the two sound speeds. There will be a

suite of p. constraints rather than the single p of Sect. III.1
However these constraints pose no fundamental problem to the second

method, other than to complicate the eigenvalue equation. Examples of

this will be given later.

Consider now the case of strongly trapped modes for the case of Fig.

11. From Eq. (83) we see that high frequencies correspond to large

negative w. If we replace each Airy function in Eqs. (79) to (82) by

its first asymptotic term and evaluate for large negative w we find that

1/23
Wl - 2w-Ipl exp (l+pI )c (85)

W2  0 0, (86)

W3 - 0, (87)

and

-1 -1 1/2 3
W4 - - 2 w P1 exp -(l+Pl)c (88)

where

C = 2(-w)3/2/3. (89)

ThUS Eq. (78) may be apprcximated by

-1
Aif-y) G1 + 4 Bi(-y) G2 exp -2(0+P0) !90)



For large negative values of w, Eq. (90) reduces to

Ai(-y) G1  M 0. (91)

Now Gl-O is Eq. (27), the solution for the unbounded refractive duct.

Ai(-y)-O is the solution for the positive-gradient surface duct. Thus

at high frequencies the eigenvalues for the profile configuration of

Fig. 11 become the composite of those for the surface duct and the

unbounded refractive duct.

Figure 5 illustrated numerically that at high frequencies the

eigenvalues for a double duct were related to those of the single

ducts. The derivation of Eq. (91) has demonstrated this result

analytically. The result is not new but the manner in which it arises

is of interest. The result arises from the asymptotic behavior of Ai,1 1
Bi, Ai, and Bi and the particular location of these elements in the

eigenvalue matrix of Eq. (77).

We have already demonstrated that the second approach is not practical

for the general configuration of Fig, 11. Consider now Table 5 which

outlines the various cases that arise when the six profile parameters

are related by various conditions. Case numbers are assigned in column

1 for ease of identification. Column 2 gives the condition and column

3 lists the mathematical variables.

Case 1 is the general case with six independent profile parameters and

five mathematical variables. Case 2 to 4 represent the equality of

various pairs of gradients. Case 2 eliminates p and case 3

eliminates pl The condition of case 4 leads to the constraint

Pp" =  cl /C (92)

However tr'C doe, not el'minate any of the mathematica vdr~'de



Case 5 is significant because it leads to elimination of y as a

variable and to the necessity for Eq. (84) as a constraint. To

demonstrate this we note that pa 3/a2 and p=a 2/a . Hence

PP a 3/a1 . (93)

Equation (93) is true for the general profile. However if cl=c 3,

then Eq. (74) may be written as

y - (Ppl ) x (94)

and y is eliminated by an expression involving three of the other

mathematical variables. We see that the second approach now becomes

viable. The situation is akin to that of Sect. III except we must deal

with two gradient ratios rather than one.

Case 6 is the combination of cases 2 and 5 and eliminates y and p.

The profile investigated in Ref. 2 is of this type. Case 7 is the

combination of cases 3 and 5 and eliminates y and pl" Case 8 is

the combination of cases 4 and 5 and eliminates y and pl. Equation

(93) holds and reduces to

Pp 1  1 (95)

for c 3=c 1 . Thus Eq. (95) may be used to eliminate pl"

Case 9 is the combination of cases 2 and 3 and eliminates p and

PlI Cases 10 and 11 are the combination of case 4 with cases 2 and

3 respectively. Neither results in any change from cases 2 and 3

because Eq. (93) does not reduce the variables unless c=c 3

Finally case 12 is the combination of cases 2 to 5 and eliminates all

out the x and w variables. we note that given any three of the four

conditions case 12 implies the fourth condition. Thus there are no

d'stinct cases involving three conditions.



In closing this section we note that the vital feature of profile

simplification in Table 5 is the elimination of the variable y. The

apparent elimination of gradient ratios by making them equal to unity

is not really a significant simplification. The ratio of unity still

remains as a constraint on the profile parameters and the eigenvalue

equation is not really less difficult. For example the solution of Eq.

(78) is not significantly more difficult for p-0.5 than it is for

p'l. The elimination of gradient ratios may actually have an adverse

effect. For example we suspect that case 12 of Table 5 leads to

degenerate eigenvalues, because of the symm~etries involved.

V. AREAS FOR FURTHER INVESTIGATION

Much of the work outlined here is concerned with the comparison of

various ray theory approaches with normal mode theory by means of the

phase and group velocity. This is the major thesis of Ref. 3, which

was written before the present article was begun. We have shown that

at high frequencies the mode theory phase and group velocities for

various bounded ducts goes to the solution for simple unbounded ducts.

Moreover through the use of non-integral n we can make ray theory phase

and group velocities agree with the modal result for the simple

unbounded ducts. The idea is to use non-integral n in the phase

integral method which would utilize "corrected"l expressions for R, T,

E., and E 0as specified by the ray theory approach under test. The

use of non-integral n would be superior to the use of integral n

because the ray theory result would now go to the exact high frequency

limit.

There are two general extensions of the present article which would be

useful in the comparison of ray theory approaches. We have presented

the solution for a positive-gradient duct with a free-surface

Doundary. The first extension is to determine non-integral valuec of n

lpiat will make ray theory exact for a negative-gradient duct with a



rigid-bottom boundary. In this case the non-integral n's are a function
1

of the roots of Ai rather than Ai. A second extension is to develop

and analyze expressions for group velocity making use of the

dimensionless mathematical variables.

Reference 3 recoimended three ray theories for comparison. We will

only outline them here. There are two important updates to Ref. 3.

The first is that we now have available Eq. (49) for treating

asymmnetric ducts. The second is that we recognize that the second

method of determining elgenvalues is feasible as long as no more than

two distinct sound speeds are present in the profile model.

One of the ray theories cited in Ref. 3 is associated with the

introduction of medium attenuation through the use of complex

coefficients in the sound speed model. We first note that the solution

of Sect. II remains valid for complex parameters. Thus the phase

integral method with non-integral n gives the identical solution for

mode attenuation as does the normal mode theory. The implementation of

this approach will require the solution of Eq. (27) for complex p.

Furthermore the n of Eq. (49) will have an imaginary component. There

are two other ray approaches which can be tested against this

solution. The first approach integrates the local attenuation along

the ray path and divides by R to obtain the attenuation coefficient.

The second approach uses rays with complex phase velocity. Here the

attenuation coefficient is given by wImT/R.

A second ray theory for testing is that of Ref. 5 which treats free or

rigid boundaries. The profile of Fig. 6 can be used to test a free

boundary. The left profile of Fig. 12 can be used to test both free

and rigid boundaries.

A~i ' r ay theory for testing is that of R~ef. 6 which treats rays

turning near or barely penetrating a relative maximum in sound speed.



Figure 11 with C =c3 represents a semi-bounded profile suitable for

such testing. The right profile of Fig. 12 presents a simpler profile

for such a test.

We now turn to further work not concerned with testing ray theories.

We first note that there remain some interesting questions about Sect.

III. What is the significance of pure imaginary frequency? What is

the behavior for small y and p as previously discussed? We call

attention to another feature of Fig. 8. Suppose y=l.O. Here the

smallest eigenvalue does not correspond to a real frequency. Thus the

second eigenvalue must correspond to the first mode. However as y is

decreased the second eigenvalue must correspond to the second mode when

the frequency of the first eigenvalue turns real. This implies that

the eigenfunction for the second mode must have one node at y=l.O and

this must change to two nodes as y is decreased. Consider the more

extreme case of the fifth eigenvalue curve in Fig. 8. At y=-3.0 this

is the fifth mode with 5 nodes in the eigenfunction. As y is increased

the mode number (and number of nodes) will decrease by one each time

one of the lower-order eigenvalues crosses the line y=x.

We also recommend that the counterpart of Fig. 7 be generated for the

profile of Fig. 11 with c=c 3. This would not only represent a

more complicated application of the second method, but would shed some

analytic insight into some of the unresolved problems of Ref. 2.

VT. SUMMARY

Two general approaches to eigenvalue problems have been considered. In

the first or usual approach the dimensionless mathematical variables

are evaluated numerically in items of the physical and profile

parameters The eigenvalue matrix is then iterated by numerical

methods to determine the mode phase veiocity in terms of the frequency



and profile parameters. In the second approach, which is the main

subject of this article, the eigenvalue equation is initially solved in

terms of the mathematical variables for some generic profile

configuration. The mode phase velocity is then evaluated in terms of

the frequency, mathematical eigenvalues, and the parameters for any

desired profile of the generic configuration.

The simplest generic configurations only involve profiles with two

parameters. There are two configurations of this type. The first is a

surface duct consisting of a positive-gradient half space bounded above

by a free surface. The second is a negative-gradient half space

bounded below by a rigid bottom surface. Here there is one variable in

the eigenvalue equation whose solution is the roots of Ai(-x)=O for the
1

free surface and Ai(-x)=O for the rigid surface. The phase velocity

may then be solved in terms of these Airy function roots and the

independent variables of frequency and two profile parameters.

The next more elaborate configuration involves a profile with three

parameters. This is an unbounded refractive duct. Here there are two

mathematical variables x and p (a ratio of gradients). Here the

eigenvalue x is solved as a function of p. These eigenvalues have

been computed for the first four modes for Op<_.l. Values for
-l

p>l can be simply expressed in terms of the solution of p

Once the value of x has been obtained the solution proceeds as for the

simplest configuration.

The next more elaborate configuration involves two different sound

speeds. A detailed evaluation has been carried out for one such

configuration. This is a refractive duct bound above by a free surface

but unbounded below. Here the profile has four parameters while there

are three mathematical variables. These are x and y, associated with

:ne t4o respective sound speeds, and the ratio of axial gradients p.

Here the eigenvalue x is solved as a function of y for a fixed value

p.W



These eigenvalues have been computed for the first five roots for

p=l. The behavior for other values of p can be readily inferred.

For any configuration with two distinct sound speeds the frequency can

no longer be treated as an independent variable. It is a dependent

variable which is a function of x and y and the profile parameters.

Once the frequency has been determined as *a dependent variable the

solution proceeds as previously discussed.

The second approach cannot be carried out when there are three distinct

sound speeds at interfaces or boundaries of the generic profile

configuration. This is demonstrated for the case of a surface duct

overlaying a refractive duct. Here the three sound speeds are that at

the surface, at the duct axis, and at the barrier between the ducts.

The problem here is that all three sound speeds cannot be specified

independently. One of the sound speeds must be expressed as a

dependent function of the mathematical eigenvalues in order to satisfy

the constraints between profile parameters and mathematical variables.

However the second approach is viable for degenerate profile

configurations where the interface and boundary sound speeds reduce to

only two distinct values. An example is a double-duct configuration,

just referred to, for which the surface and axial sound speeds are the

same. Other examples are a refractive duct bounded above and below by

boundaries at the same sound speed or a positive-gradient surface duct

overlaying a negative-gradient bottom reflected duct with the surface

and bottom sound speeds the same. For these degenerate configurations

the solution proceeds in essentially the same manner as described

previously for the refractive duct bound above by a free surface and

unbounded below. The chief difference is that the eigenvalue equation

is more complicated and may involve several ratios of gradients, i.e.,

one ratio for each profile Interface



The second approach has several advantages over the first approach.

One advantage is that the second approach solves the eigenvalue

equation for a generic profile configuration. These eigenvalues may

then be used to determine phase velocity for any desired member of the

profile configuration. In contrast the first approach treats each

profile and frequency as a distinct problem and is in effect solving

the same problem over and over again. Consider for example the

unbounded refractive duct. The second approach requires one set of

iterations for each of the desired values of p. The first approach

requires a set of iterations for each frequency desired for a given

profile and the entire process must be repeated for each profile

desired.

Another advantage of the second approach is the relative ease with

which the eigenvalues can be determined. The presented numerical

examples exhibit a simple behavior with a wealth of mathematical

properties which can be used to interpret the behavior of the

solution. An excellent example is the refractive duct with surface

boundary. Here the eigenvalue curves go through the lattice points of

straight horizontal and vertical lines which occur at various roots of

the Airy functions and their derivatives. By comparison finding

eigenvalues by the first approach is like "shooting in the dark".

Another advantage of the second approach is the analytical results that

can be obtained. Consider for example the behavior at high

frequencies. The eigenvalues for a bounded refractive duct were

demonstrated to go to the eigenvalues for an unbounded refractive duct

for high frequencies. Similarly the eigenvalues for a double duct

configuration consisting of a surface duct overlaying a refractive duct

were demonstrated to go to the composite of the eigenvalues for a

half-bounded surface duct and for an unbounded refractive duct.

Another example of an analytical result is the development of

non-integral mode numbers. With the use of non-integral values of mode

number the phase integral method of ray theory has been brought into



congruence with the exact solution of normal mode theory for the case

of an asymm~etric refractive duct without boundaries. The ray theory

expressions for phase and group velocity are identical to those of mode

theory. These expressions are valid for all frequencies. They are

also valid for sound speed profiles in which attentuation is introduced

by means of complex coefficients in the profile representation.

A third example of an analytical result is the presence of eigenvalues

corresponding to pure imaginary frequencies. Of course if it occurred

to one to do so, one could have obtained this result by the first

approach by letting f 2be negative.
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Table 1 . Comparison of the exact jolution of Eq. (27) for

mode I with three algebraic approximations.

P Eq. (27) Eq. (35) Eq. (37) Eq. (42)

1.00 1.01879 1.27599 1.01879 1.31784

.95 1.07100 1.31096 1.07101 1.36866

.90 1.12574 1.34645 1.12576 1.42002

.85 1.18295 1.38239 1.18302 1.47179

.80 1,24254 1.41870 1.24280 1.52382

.75 1.30436 1.45531 1.30510 1.57596

.70 1 36823 1.49211 1.37001 1.62803

.65 1.43393 1.52902 1.43774 1.67990

.60 1.50120 1.50592 1.50870 1.73139

.55 1.56975 1.60271 1.58362 1.78238

.50 1.63928 1.63928 1.66368 1.83273

.45 1,70949 1.67553 1.75076 1.88237

.40 1.78009 1.71137 1.84778 1.93126

.35 1.85083 1.74673 1 .95931 1 .97944

.30 1.92148 1.78157 2.09272 2.02704

.25 1.99187 1.81591 2.26050 2.07434

.20 2.06189 1.84984 2248560 2,12181

.15 2.13148 1.88360 2.81616 2.17022

.10 2.20066 1.917b3 3,37727 2.22079

.05 2.26948 1.95273 4.66840 2.27552

.00 2,33811 1.99037 -2.33811



Table 2. Counterpart of Table 1 for mode 2.

P Eq. (27) Eq. (35) Eq. (37) Eq. (42)

1.00 2.33811 2.82734 2.33811 3.00431

.95 2.45472 2.86793 2.45471 3.06841

.90 2.56867 2.91018 2.56935 3.13205

.85 2.68156 2.95431 2.67978 3.19507

.80 2.78946 3.00058 2.78346 3.25731

.75 2.89295 3.04932 2.87767 3.31861

.70 2.99201 3.10094 2.95963 3.37880

.65 3.08688 3.15599 3.02668 3.43771

.60 3,17792 3.21517 3.07646 3.49517

.55 3.26554 3.27944 3.10712 3.55102

.50 3.35012 3.35012 3.11748 3.60511

.45 3,43199 3.42908 3.10712 3.65732

.40 3,51143 3.51911 3.07646 3.70759

.35 3.58870 3.62448 3.02668 3.75592

.30 3.66402 3.75214 2.95963 3.80239

.25 3.73761 3.91428 2.87767 3.84729

.20 3.80968 4.13424 2.78346 3.89111

.15 3.88048 4.46324 2.67978 3.93473

.10 3.95025 5.03981 2.56935 3.97967

.05 4.01930 6.41385 2.45471 4.02870

.00 4.08795 15.4774 2.33811 4.08795



Table 3. Roots of Eq. (27) and relationship to the non-integral
mode number of Eq. (49).

Upper Duct Lower Duct
Mode Modified
Number n x Eq. (49) x Eq. (49)

1 .93643 1.509857 .976059 1.234323 .943822

2 2.01734 3.189256 1.961474 2.775082 1.996165

3 2.98458 4.542342 2.984444 3.917366 3.009325

4 4.00790 5.713857 4.004702 4.879389 3.988301



Table 4. Lower order roots of Eqs. (65) and (68).

Root
Number Eq. (65) Eq. (68)

1 0 0.4899060

2 1.7647488 1.5621030

3 2.8082340 2.3381074

4 3.6816163 2.9624100

5 4.4606953 3.5439131

4-4



Table 5. Simplifications arising from various

conditions between the parameters of Fig. !l.

Case Condition Variables

1 General X. y. W, P. p

2 '3 -30 X. Y w, Pl

y 2 -20 x y, W, p

41 Y3 X Y, W, p, p1

5 CI - c 3  X, Wp, p

6 2+5 X,Wp 1

7 3+5 x, w,p

8 4+5 x w, p

9 2 + 3 x, y, w
10 2 + 4 x, Y, W, P1

II 3+4 x y, wt p
12 2+3+4+5 x, w
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